A Novel Pulse Coupled Neural Network Based Method for Multi-focus Image Fusion
نویسندگان
چکیده
Multi-focus image fusion means to fuse multiple source images with different focus settings into one image, so that the resulting image appears sharper. In order to extract the focused regions of the fused image efficiently, a novel pulse coupled neural network (PCNN) method for multi-focus image fusion is proposed. The registered source images are decomposed into principal components and sparse components by robust principal component analysis (RPCA) decomposition, and the important features of the sparse components are used to motivate the PCNN neurons, whose outputs detect the focused regions of the source images and integrate them to construct the final fused image. Experimental results show that the proposed scheme works better in extracting the focused regions and improving the fusion quality compared to the other existing fusion methods in terms of mutual information (MI) and / AB F Q .
منابع مشابه
An Efficient Multi-Focus Image Fusion Scheme Based On PCNN
Optics of lenses with a high degree of magnification suffers from the problem of a limited depth of field. As the focal length and magnification of the lens increase, the depth of field decreases. As a result, it is often not possible to get an image that contains all relevant objects in focus. To overcome the problem of finite depth of field, image fusion technique is designed which combines t...
متن کاملMedical image fusion based on pulse coupled neural networks and multi-feature fuzzy clustering
Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of th...
متن کاملAn application of swarm intelligence binary particle swarm optimization (BPSO) algorithm to multi-focus image fusion
In this paper, an optimal and intelligent multi-focus image fusion algorithm is presented, expected to achieve perfect reconstruction or optimal fusion of multi-focus images with high speed. A synergistic combination of segmentation techniques and binary particle swarm optimization (BPSO) intelligent search strategies is employed in salience analysis of contrast feature-vision system. Also, sev...
متن کاملNSCT-Based Multimodal Medical Image Fusion With Sparse Representation and Pulse Coupled Neural Network
Multimodal medical image fusion plays a vital role in clinical diagnosis and treatment planning. In the image fusion methods based on nonsubsampled contourlet transform (NSCT) and pulse coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing, which makes the fused image blurred, detail loss and decrease in contrast. In this paper, we present...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014